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Einstein Frame or Jordan Frame?
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Scalar±tensor theories of gravity can be formulated in the Jordan or in the Einstein
frame, which are conformally related. The issue of which conformal frame is
physical is a contentious one; we provide a straightforward example based on
gravitational waves in order to clarify the issue.

1. INTRODUCTION

Scalar±tensor theories of gravity, of which Brans±Dicke [1] theory is

the prototype, are competitors to Einstein’ s theory of general relativity for

the description of classical gravity. Renewed interest in scalar±tensor theories

of gravity is motivated by the extended [2] and hyperxtended [3] inflationary
scenarios of the early universe. Additional motivation arises from the presence

of a fundamental Brans±Dicke-like field in most high-energy physics theories

unifying gravity with the other interactions (the string dilaton, the supergravity

partner of spin-1/2 particles, etc.).

It is well known since the original Brans±Dicke paper [1] that two

formulations of scalar±tensor theories are possible, the version in the so-
called Jordan conformal frame commonly presented in the textbooks (e.g.

[4±6]), and the less-known version based on the Einstein conformal frame,

which is related to the former one by a conformal transformation and a

redefinition of the gravitational scalar field present in the theory. The possibil-

ity of two formulations related by a conformal transformation exists also for
Kaluza±Klein theories and higher derivative theories of gravity (see refs. 7

and 13 for reviews). The problem of whether the two formulations of a

scalar±tensor theory in the two conformal flames are equivalent or not has
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been the issue of lively debates which are not yet settled, and often is the

source of confusion in the technical literature. While many authors support

the point of view that the two conformal frames are equivalent, or even that
physics at the energy scale of classical gravity and classical matter is always

conformally invariant, other authors support the opposite point of view, and

others again are not aware of the problem (see the ª classification of authorsº

in ref. 7). The issue is important in principle and in practice, since there are

many applications of scalar±tensor theories and of conformal transformation

techniques to the physics of the early universe and to astrophysics. The
theoretical predictions to be compared with the observations (in cosmology,

the existence of inflationary solutions of the field equations, and the spectral

index of density perturbations) crucially depend on the conformal frame

adopted to perform the calculations.

In addition, if the two formulations of a scalar±tensor theory are not

equivalent, the problem arises of whether one of the two is physically pre-
ferred, and which one has to be compared with experiments and astronomical

observations. Are both conformal versions of the same theory viable, and

good candidates for the description of classical gravity? Unfortunately, many

authors neglect these problems, and the issue is not discussed in the textbooks

explaining scalar±tensor theories. On the other hand, it emerges from the
work of several authors, in different contexts (starting with refs. 8, 10, and

11 on Kaluza±Klein and Brans±Dicke theories, and summarized in refs. 7

and 13), that the following hold:

1. The formulations of a scalar±tensor theory in the two conformal

frames are physically inequivalent.

2. The Jordan frame formulation of a scalar±tensor theory is not viable
because the energy density of the gravitational scalar field present

in the theory is not bounded from below (violation of the weak

energy condition [14]). The system therefore is unstable and decays

toward a lower and lower energy state ad infinitum [7, 13].

3. The Einstein frame formulation of scalar±tensor theories is free of
problem 2. However, in the Einstein frame there is a violation of

the equivalence principle due to the anomalous coupling of the

scalar field to ordinary matter (this violation is small and compatible

with the available tests of the equivalence principle [11]; it is indeed

regarded as an important low-energy manifestation of compactified

theories [9±12].

It is clear that property 2 is not acceptable for a viable classical theory

of gravity (a quantum system, on the contrary, may have states with negative

energy density [15, 16]). A classical theory must have a ground state that is

stable against small perturbations.
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In spite of this compelling argument, there is a tendency to ignore

the problem, which results in a uninterrupted flow of papers performing

computations in the Jordan frame. The use of the latter is also implicitely
supported by most textbooks on gravitational theories. Perhaps this is due to

reluctance in accepting a violation of the equivalence principle, on philosophi-

cal and aesthetic grounds, or perhaps it is due to the fact that the best

discussions of this subject are rather mathematical than physical in character,

and not well known. In this paper, we present a straightforward argument in

favor of the Einstein frame, in the hope of help settling the issue.
In Section 2 we recall the relevant formulas. In Section 3 we present a

simple argument based on scalar±tensor gravitational waves, and in Section

4 we give a discussion and the conclusions.

2. CONFORMAL FRAMES

The textbook formulation of scalar±tensor theories of gravity is the one
in the Jordan conformal frame, in which the action takes the form4

S 5
1

16 p # d 4x ! 2 g F f ( f )R 2
v ( f )

f
g a b ¹ a f ¹ b f 1 L ( f ) G

1 # d 4x ! 2 g+matter (2.1)

where +matter is the Lagrangian density of ordinary matter, and the couplings

f ( f ), v ( f ) are regular functions of the scalar field f . Although our discussion

applies to the generalized theories described by the action (2.1), for simplicity,
we will restrict ourselves to Brans±Dicke theory, in which v and L are

constants and we will omit the nongravitational part of the action, which is

irrelevant for our purposes. We further assume that L 5 0; the field equations

then reduce to

R m n 2
1

2
g m n R 5

v
f 2 1 ¹ m f ¹ n f 2

1

2
g m n ¹ a f ¹ a f 2 1

1

f
( ¹ m ¹ n f 2 g m n N f ) (2.2)

N f 1
f R

2 v
5 0 (2.3)

4 The metric signature is 2 1 1 1 , the Riemann tensor is given in terms of the Christoffel
symbols by R m n r

s 5 G s
m r , n 2 G s

n r , m 1 G a
m r G s

a n 2 G a
n r G s

a m , the Ricci tensor is R m r [ R m n r n , and
R 5 g a b R a b . Here ¹ m is the covariant derivative operator, N [ g m n ¹ m ¹ n , h m n 5 diag( 2 1,
1, 1, 1), and we use units in which the speed of light and Newton’ s constant assume the
value unity.
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It has been well known since the original Brans±Dicke paper [1] that another

formulation of the theory is possible: the conformal transformation

g m n ® gÄ m n 5 f g m n (2.4)

and the scalar field redefinition

f ® f Ä 5 # (2 v 1 3)1/2

f
d f (2.5)

(where v . 2 3/2), recast the theory in the so-called Einstein conformal

frame,5 in which the gravitational part of the action becomes that of Einstein

gravity plus a non-self-interacting scalar field,6

S 5 # d 4x ! 2 gÄ F RÄ

16 p
2

1

2
gÄ m n ¹ Ä m f Ä ¹ Ä n f Ä G (2.6)

The field equations are the usual Einstein equations with the scalar field as

a source,

RÄ m n 2
1

2
gÄ m n RÄ 5 8 p 1 ¹ Ä m f Ä ¹ Ä n f Ä 2

1

2
gÄ m n ¹ Ä a f Ä ¹ Ä a f Ä 2 (2.7)

N f Ä 5 0 (2.8)

It has been pointed out (see refs. 7 and 13 for reviews) that the Jordan frame
formulation of Brans±Dicke theory is not viable because the sign of the

kinetic term for the scalar field is not positive definite, and hence the theory

does not have a stable ground state. The system decays toward lower and

lower energy states without a lower bound. On the contrary, the Einstein

frame version of the theory possesses the desired stability property. These

features were first discovered in Kaluza±Klein and Brans±Dicke theory [8,
10, 11], and later (refs. 7 and 13 and references therein) in scalar±tensor and

nonlinear theories of gravity with Lagrangian density of the form + 5 f ( f ,

R). Despite this difficulty with the energy, the textbooks still present the

Jordan frame version of the theory without mention of its Einstein frame

counterpart. The technical literature is also haunted by confusion on this

topic, expecially in cosmological applications [7, 13]. Many authors perform
calculations in both conformal frames, while others support the use of the

Jordan frame, or even claim that the two frames are physically equivalent.

The issue of the conformal frame may appear a purely technical one, but it

5 Also called the ª Pauli frameº in refs. [9±11].
6 If the Lagrangian density +matter of ordinary matter is included in the original action, it will
appear multiplied by a factor exp( 2 a f

Ä
) in the action (2.6); this anomalous coupling is

responsible for a violation of the equivalence principle in the Einstein frame [9±12].
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is indeed very important in principle, and because the physical predictions

of a classical theory of gravity, or of an inflationary cosmological scenario,

are deeply affected by the choice of the conformal frame. Here, we study
the violation of the weak energy condition by classical gravitational waves.

It appears very hard to argue with the energy argument that leads to the

choice of the Einstein frame [7]; moreover, the entire realm of classical7

physics is not conformally invariant. The literature on the topic is rather

mathematical and abstract, and can be easily missed by the physically minded

reader. In the next section we propose a physical illustration of how the weak
energy condition is violated in the Jordan frame, but not in the Einstein frame.

3. GRAVITATIONAL WAVES IN THE JORDAN AND IN THE
EINSTEIN FRAME

We begin by considering gravitational waves in the Jordan frame version

of Brans±Dicke theory. In a locally freely falling frame, the metric and the

scalar field are decomposed as follows:

g m n 5 h m n 1 h m n (3.1)

f 5 f 0 1 w (3.2)

where h m n is the Minkowski metric, f 0 is constant, and the wavelike perturba-

tions h m n , w / f 0 have the same order of magnitude,

O 1 w
f 0 2 5 O(h m n ) 5 O( e ) (3.3)

in terms of a smallness parameter e . The linearized field equations in the

Jordan frame

R m n 5
- m - n w

f 0

(3.4)

N w 5 0 (3.5)

allow the expansion of w in monochromatic plane waves:

w 5 w 0 cos (k a x a ) (3.6)

where w 0 is constant and h m n k
m k n 5 0. Now note that, for any timelike vector

j m , the quantity T m n j m j n (which represents the energy density of the waves

as seen by an observer with four-velocity j m ) is given to the lowest order by

7 Quantum states can violate the weak energy condition [15, 16]; in this paper, we restrict
ourselves to classical gravitational theories.
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T m n j m j n 5 2 (k m j m )2 w
f 0

(3.7)

This quantity oscillates, changing sign with the frequency of w and therefore

violating the weak energy condition [14]. In addition, the energy density is

not quadratic in the first derivatives of the field, and this implies that the

energy density of the scalar field w is O ( e ), while the contribution of the

tensor modes h m n is only O ( e 2) (and is given by the Isaacson effective stress-

energy tensor [5] T (eff)
m n [h a b ]). The Jordan frame formulation of Brans±Dicke

theory somehow discriminates between scalar and tensor modes. From an

experimental point of view, this fact has important consequences for the

amplification induced by scalar±tensor gravitational waves on the light propa-

gating through them, and for ongoing VLBI observations [17±19]. If the

Jordan frame formulation of scalar±tensor theories was the physical one,
astronomical observations could potentially detect the time-dependent ampli-

fication induced by gravitational waves in a light beam, which is of order e
[17]. If instead the Einstein frame formulation of scalar±tensor theories is

physical (which is the case, as as we shall see in the following), then the

amplification effect is of order e 2, and therefore undetectable [17±19].

We now turn our attention to gravitational waves in the Einstein frame
version of Brans±Dicke theory. The metric and scalar field decompositions

gÄ m n 5 h m n 1 hÄ m n (3.8)

f Ä 5 f Ä 0 1 w Ä (3.9)

where f Ä 0 is constant and O(hÄ m n ) 5 O( w Ä / f Ä 0) 5 O( e ), lead to the equations

RÄ m n 2
1

2
gÄ m n RÄ 5 8 p (TÄ m n [ w Ä ] 1 TÄ (eff)

m n [hÄ m n ]) (3.10)

N w Ä 5 0 (3.11)

Here TÄ m n [ w Ä ] 5 - m w Ä - n w Ä 2 h m n - a w Ä - a w Ä /2. Again, we consider plane monochro-

matic waves

w Ä 5 w Ä 0 cos (l a x a ) (3.12)

where w Ä 0 is a constant and h m n l
m l n 5 0. The energy density measured by an

observer with timelike four-velocity j m in the Einstein frame is

TÄ m n j m j n 5 [l m j m w Ä 0 sin (l a x a )]2 1 TÄ (eff)
m n [hÄ a b ] j m j n (3.13)

which is positive definite. The contributions of the scalar and tensor modes

to the total energy density have the same order of magnitude, O( e 2), and are

both quadratic in the first derivatives of the fields. The weak energy condition
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is satisfied in the Einstein, but not in the Jordan frame; physically reasonable

matter in the classical domain is expected to satisfy the energy conditions [14].

Let us return for a moment to the Jordan frame: analogously to Eq.
(3.7), the energy-momentum 4-current density of scalar gravitational waves

in the Jordan frame is

T0 m 5 2 k m (k n j n )
w
f 0

(3.14)

In the Jordan frame, the energy density and current of spin-0 gravitational
waves average to zero on time intervals much longer than the period of the

waves. However, this is not a solution to the problem, since one can conceive

of scalar gravitational waves with very long period. For example, gravitational

waves from astronomical binary systems have periods ranging from hours

to months (waves from m -Sco, e.g., have a period 3 3 105 s). The violation

of the weak energy condition over such macroscopic time scales is unphysical.

4. DISCUSSION AND CONCLUSIONS

The violation of the weak energy condition by scalar±tensor theories

formulated in the Jordan conformal frame makes them unviable descriptions
of classical gravity. Due to the fact that scalar dilatonic fields are ubiquitous

in superstring and supergravity theories, there is a point in considering Brans±

Dicke theory (and its scalar±tensor generalizations) as toy models for string

theories (e.g. [9, 10, 20]), and in this case our considerations should be

reanalyzed, because negative energy states are not forbidden at the quantum

level [15, 16]. However, this context is quite limited, and differs from the
usual classical studies of scalar±tensor theories.

The reluctance of the gravitational physics community to accept the

energy argument in favor of the Einstein frame is perhaps due to the fact

that it was formulated in a rather abstract way. The example illustrated in

the present paper shows, in a straightforward way, the violation of the weak

energy condition by wavelike gravitational fields in Brans±Dicke theory
formulated in the Jordan frame, and the viability of the Einstein frame counter-

part of the same theory. The example is not academic, since an infrared

catastrophe for scalar gravitational waves would have many observational

consequences. One example studied in the astronomical literature consists

of the amplification effect induced by scalar±tensor gravitational waves on

a light beam, which differs in the Jordan and in the Einstein frame [17±19].
The argument discussed in this paper for Brans±Dicke theory can be

easily generalized to other scalar±tensor theories. Our conclusions agree with,

and are complementary to, those of refs. 9±11, although our approach is

different. It has also been pointed out that the Einstein frame variables
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(gÄ m n , f Ä ), but not the Jordan frame variables (g m n , f ), are appropriate for the

formulation of the Cauchy problem [21].

The example presented in this paper agrees with recent studies of the
gravitational collapse to black holes in Brans±Dicke theory [22]. The nonca-

nonical form of the stress-energy tensor of the Jordan frame Brans±Dicke

scalar is responsible for the violation of the null energy condition (R a b n a n b

$ 0 for all null vectors n a ). This causes a decrease in time of the area of

the black hole horizon [22], contrary to the behavior predicted by black hole

thermodynamics [14] in general relativity. In our example, the null energy
condition is satisfied, but there are still pathologies due to the violation of

the weak energy condition. Within the classical context, scalar±tensor theories

must be formulated in the Einstein conformal frame, not in the Jordan one.
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